Let I=∫√a2−x2dx
=∫√a2−x2⋅1dx
On integrating by parts, we get
I=√a2−x2∫1dx−∫[ddx(√a2−x2)∫1dx]dx
=x√a2−x2−∫−2x2√a2−x2x⋅dx
=x√a2−x2−∫(a2−x2)−a2√a2−x2dx
=x⋅√a2−x2−∫[√a2−x2−a2√a2−x2]dx
=x⋅√a2−x2−∫√a2−x2dx+a2∫1√a2−x2dx
=x⋅√a2−x2−I+a2⋅sin−1(xa)+c1
2I=x√a2−x2+a2⋅sin−1(xa)+c1
I=x2√a2−x2+a22sin−1(xa)+c1
∴∫√a2−x2dx=x2√a2−x2+a22sin−1(xa)+c where, c=c12.