wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: a2x2dx=x2a2x2+a22sin1(xa)+c

Open in App
Solution

Let I=a2x2dx
=a2x21dx
On integrating by parts, we get
I=a2x21dx[ddx(a2x2)1dx]dx
=xa2x22x2a2x2xdx
=xa2x2(a2x2)a2a2x2dx
=xa2x2[a2x2a2a2x2]dx
=xa2x2a2x2dx+a21a2x2dx
=xa2x2I+a2sin1(xa)+c1
2I=xa2x2+a2sin1(xa)+c1
I=x2a2x2+a22sin1(xa)+c1
a2x2dx=x2a2x2+a22sin1(xa)+c where, c=c12.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon