wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanx1/et1+t2dt+cotx1/e1t(1+t2)dt=1.

Open in App
Solution

To prove tanx1et1+t2dt+cotx1e1t(1+t2)dt
Let I1=tanx1et1+t2dtI2=cotx1e1t(1+t2)dt
and I=I1+I2
also, cotx1e1t(1+t2)dt
Let t=1z
dt=1z2dz
So, I1=tanxezdzz2(1+1z2)=etanxzdz1+z2
So, I2=etanxtdt1+t2
So, I=I1+I2
I=e1etdt1+t2=12e1e2t1+t2dtI=12log(1+t2)e1eI=12log(1+e2)12log(1+1e2)I=12[log(1+e21+1e2)]I=12loge2I=12×2I=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon