wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: logaNlogbN+logbNlogcN+logcNlogaN=logaNlogbNlogcNlogabcN

Open in App
Solution

logaN.logbN+logbN.logcN+logcN.logaN

=1logNalogNb+1logNblogNc+1logNclogNa (logab=1logba)

=logNc+logNa+logNblogNa.logNb.logNc

=logNabclogNalogNblogNc (logmnp=logm+logn+logp)

=1logabcN1logaN.1logbN.1logcN (logab=1logba)


=logaN.logbN.logcNlogabcN

Hence, logaN.logbN+logbN.logcN+logcN.logaN=logaN.logbN.logcNlogabcN

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Logarithm with Use
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon