wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan11π32sin4π634cosec2π4+4cos217π6=3432

Open in App
Solution

LHS
=tan11π32sin4π334csc2π4+4cos217π6
cscπ4=2
=tan(3π+2π3)2sin2π334(2)2+4cos2(2π+5π6)
=tan2π32sin(ππ3)32+4cos2(ππ6)
=tan(π3)2sinπ332+4cos2π6
puting values
tan(π3)=3
sinπ3=3/2
cosπ6=3/2
=323232+4(34)
=3332+3
=3432=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon