Prove that each angle of an equilateral triangle is 60∘
Given : ΔABC is an equilateral triangle
To prove : ∠A=∠B=∠C=60∘
Proof : In ΔABC,
AB=AC (Sides of an equilateral triangle)
∴ ∠C=∠B ...(i)
(Angles opposite to equal angles)
Similarly,AB=BC
∴ ∠C=∠A ...(ii)
From (i) and (ii)
∠A=∠B=∠C
But ∠A+∠B+∠C=180∘
(Sum of angles of a triangle)
∴ ∠A=∠B=∠C=180∘3=60∘