It is given that point P(1,2,3) lies on the required plane.
Also, planes →r.(^i+^j+^k)=3 and →r.(2^i+3^j+4^k)=0 are perpendicular to required plane. Hence, their perpendiculars →n1=^i+^j+^k and →n2=2^i+3^j+4^k are also perpendicular to required plane.
Now, the required plane is also perpendicular to its normal vector →n. Hence, using perpendicularity theorem,
→n=→n1×→n2
∴→n=(^i+^j+^k)×(2^i+3^j+4^k)
∴→n=∣∣
∣
∣∣^i^j^k111234∣∣
∣
∣∣
∴→n=(4−3)^i−(4−2)^j+(3−2)^k
∴→n=^i−2^j+^k
Now, equation of plane with normal vector →n and passing through P is
(→r−→p).→n=0
∴(→r−(^i+2^j+3^k)).(^i−2^j+^k)=0
∴(→r).(^i−2^j+^k)−(^i+2^j+3^k).(^i−2^j+^k)=0
∴(→r).(^i−2^j+^k)−1+4−3=0
∴(→r).(^i−2^j+^k)=0
Hence, proved.