y=4sinx2+cosx−x
dydx=4cosx(2+cosx)−(−sinx)(4sinx)(2+cosx)2−1
dydx=8cosx+4(cosx2+sinx2)(2+cosx)2−1
=8cosx+4(2+cosx)2−1
=8cosx+4−(2+cosx)2(2+cosx)2
=8cosx−4cosx+4−4−cos2x(2+cosx)2
dydx=4cosx−cos2x(2+cosx)2
For function to be increa\sin g,
dydx=cosx(4−cosx)(2+cosx)2x>0
Therefore, cosx(4−cosx)>0forxϵ[0,π2]
0≤cosx≤1...................(i)
Adding 4 both sides,
3≤4−cosx≤4
Therefore 4−cosx is positive.
Thereforecosx(4−cosx)>0forθϵ[0,π2]
Hence, y=4sinx2+cosx−x is increa\sin g function for xϵ[0,π2]