wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that f(x)=4sinx2+cosxx is an increasing function for xϵ(0,π2) .

Open in App
Solution

y=4sinx2+cosxx
dydx=4cosx(2+cosx)(sinx)(4sinx)(2+cosx)21
dydx=8cosx+4(cosx2+sinx2)(2+cosx)21
=8cosx+4(2+cosx)21
=8cosx+4(2+cosx)2(2+cosx)2
=8cosx4cosx+44cos2x(2+cosx)2
dydx=4cosxcos2x(2+cosx)2
For function to be increa\sin g,
dydx=cosx(4cosx)(2+cosx)2x>0
Therefore, cosx(4cosx)>0forxϵ[0,π2]
0cosx1...................(i)
Adding 4 both sides,
34cosx4
Therefore 4cosx is positive.
Thereforecosx(4cosx)>0forθϵ[0,π2]
Hence, y=4sinx2+cosxx is increa\sin g function for xϵ[0,π2]

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon