Prove that f(x)=sinx+√3cosx has maximum value at x=π6.
We have
f(x)=sinx+√3cosx∴f′(x)=cosx+√3(−sinx)forf′(x)=0,cosx=√3sinx⇒tanx=1√3=tanπ6⇒x=π6
Again, differentiating f'(x) we get
f′′(x)=−sinx−√3cosxAtx=π6,f′′(x)=−sinπ6−√3cosπ6=−12−√3.√32=−12−32=−2<0
Hence, at x=π6, f(x) has maximum value. π6 is the point of local maxima.