Prove that following identities:
4(cos3 10∘+sin3 20∘)=3(cos 10∘+sin 20∘)
Consider the L.H.S. of the given equation
4(cos310∘+sin3 20∘)=3(cos 10∘+sin 20∘)
Since sin 30∘=cos 60∘=12
and sin 60∘=cos 30∘=√32
⇒ sin 3.20∘=cos 3.10∘ ⇒ 3 sin 20∘−4 sin3 20∘=4 cos3 10∘−3 cos 10∘⇒ 4(cos3 10∘+sin3 20∘)=3 (cos 10∘+sin 20∘)
Hence proved.