Prove that following identities:
cos3 θ sin 3θ+sin3 θ cos 3θ=34sin 4 θ
cos3 θ sin 3θ+sin3 θ cos 3θ=34sin 4 θ
LHS = cos3 θ sin 3θ+sin3 θ cos 3θ
=(cos 3θ+3 cos θ4)sin 3θ+(3 sin θ−sin 3θ4)cos 3θ{∵ sin 3θ=3 sin θ−4 sin3 θcos 3θ=4 cos3θ−3 cos θ}=14[3(sin 3θ cos θ+sin θ cos 3θ)+cos 3θ sin 3θ−sin 3θ cos 3θ]=14[3 sin (3θ+θ)+0]=34sin 4θ
So,
cos3θ sin 3θ+sin3θ cos 3θ=34 sin 4θ