wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that following identities:

cos3 θ sin 3θ+sin3 θ cos 3θ=34sin 4 θ

Open in App
Solution

cos3 θ sin 3θ+sin3 θ cos 3θ=34sin 4 θ

LHS = cos3 θ sin 3θ+sin3 θ cos 3θ

=(cos 3θ+3 cos θ4)sin 3θ+(3 sin θsin 3θ4)cos 3θ{ sin 3θ=3 sin θ4 sin3 θcos 3θ=4 cos3θ3 cos θ}=14[3(sin 3θ cos θ+sin θ cos 3θ)+cos 3θ sin 3θsin 3θ cos 3θ]=14[3 sin (3θ+θ)+0]=34sin 4θ

So,

cos3θ sin 3θ+sin3θ cos 3θ=34 sin 4θ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon