Prove that following identities:
cot A+cot (60∘+A)+cot (120∘+A)=3 cot 3A
LHS=cot A+cot (60∘+A)+cot (120∘+A)
cot A+cot(60∘+A)−cot[180∘−(120∘+A)] {Since−cot θ−cot (180∘−θ)}=cot A+cot (60∘+A)−cot(60∘−A)=1tan A+1tan(60∘+A)−1tan(60∘−A)=1tan A+1−√3 tan A√3+ tan A−1+√3 tan A√3−tan A=1tan A−8 tan A3−tan2 A=3−tan2A−8 tan2 A3 tan A−tan3 A=3−9 tan2 A3 tan A−tan3 A=3(1−3 tan2 A)3 tan A−tan3 A=3tan 3A=3 cot 3A