Prove that following identities:
cot A+cot (60∘+A)−cot (60∘−A)=3 cot 3A
LHS=cot A+cot (60∘+A)−cot (60∘−A)
=1tan A+1tan (60∘+A)−1tan 60∘−A=1tan A+1−√3 tan A√3+tan A−1+√3 tan A√3−tan A=1tan A−8 tan A3−tan2 A=3−tan2 A−8 tan2 A3tanA−tan3 A=3−9 tan2 A3 tan A−tan3 A=3(1−3 tan2 A3 tan A−tan3A)=3tan 3A=3 cot 3A=RHS
LHS = RHS