Prove that following identities:
sin3 A+sin3(2π3+A)+sin3(4π3+A)
sin3 A+sin3(2π3+A)+sin3(4π3+A) {we know that} sin3 A=3 sin A−sin 3A4
=(3 sinA−sin 3A4)+{3 sin(2π3+A)−sin 3(2π3+A)4}+{3 sin (4π3+A)−sin 3(4π3+A)4}=[3 sin A−sin 3A4]+{3 sin [π(2π3+A)]−sin (2π+3A)4}+{3 sin[π+(π3+A)]−sin (4π+3A)4}
=14{[3 sin A−sin 3A]+[3 sin (π3−A)−sin 3A]−[3 sin (π3+A)+sin 3A]}=14[3sin A−sin 3A+3 sin(π3−A)−3 sin(π3+A)−sin 3A−sin 3A]=14 [3 sin A−3 sin 3A+3(sin(π3−A)−sin(π3+A))]=14 [3 sin A−3 sin 3A+3{2 cosπ3−A+π3+A2 sin π3−A−π3−A2}]
=14 [3 sin A−3 sin 3A+6 cos π3sin(−A)]=14 [3 sin A - 3 sin 3A - 3 sin A]
=−34 sin 3A=RHS
LHS = RHS