wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that following identities:

sin3 A+sin3(2π3+A)+sin3(4π3+A)

Open in App
Solution

sin3 A+sin3(2π3+A)+sin3(4π3+A) {we know that} sin3 A=3 sin Asin 3A4

=(3 sinAsin 3A4)+{3 sin(2π3+A)sin 3(2π3+A)4}+{3 sin (4π3+A)sin 3(4π3+A)4}=[3 sin Asin 3A4]+{3 sin [π(2π3+A)]sin (2π+3A)4}+{3 sin[π+(π3+A)]sin (4π+3A)4}

=14{[3 sin Asin 3A]+[3 sin (π3A)sin 3A][3 sin (π3+A)+sin 3A]}=14[3sin Asin 3A+3 sin(π3A)3 sin(π3+A)sin 3Asin 3A]=14 [3 sin A3 sin 3A+3(sin(π3A)sin(π3+A))]=14 [3 sin A3 sin 3A+3{2 cosπ3A+π3+A2 sin π3Aπ3A2}]

=14 [3 sin A3 sin 3A+6 cos π3sin(A)]=14 [3 sin A - 3 sin 3A - 3 sin A]

=34 sin 3A=RHS

LHS = RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon