Prove that following identities:
tan θ tan (θ+60∘)+tan θ tan(θ−60∘)+tan(θ+60∘) tan(θ−60∘)=−3
tan A× tan (A+60∘)+tan A×tan(A−60∘)+tan(A+60∘) tan (A−60∘)=tan (A)[tan(A)−tan(60∘)][1+tan(A) tan(60∘)]+tan (A) [tan(A)+tan(60∘)][1−tan(A) tan (60∘)]+{[tan(A)−tan(60∘)][1+tan(A) tan(60∘)]}{[tan(A)+tan(60∘)][1−tan(A) tan(60∘)]}
=tan(A)[tan(A)−tan(60∘)][1−tan(A) tan(60∘)][1−tan2(A) tan2(60∘)] + tan(A) [tan(A)+tan(60∘)][1+tan(A)tan(60∘)][1−tan2 (A)tan2(60∘)]+[tan(A)−tan(60∘)][tan(A)+tan(60∘)][1−tan2(A) tan2(60∘)]
=tan(A) [tan(A)−√3][1−√3 tan (A)][1−3 tan2(A)]+tan (A)[tan(A)+√3][1+√3tan(A)][1−3 tan2 (A)]+[tan(A)−√3][tan(A)+√3][1−3 tan2 (A)]tan(A) [4tan(A)−√3−√3 tan2 (A)][1−3 tan2 (A)]+tan (A) 4 tan(A)+√3+√3tan2(A)[1−3 tan2 (A)]+[tan2 (A)−3][1−3 tan2 (A)]
=[9 tan2 (A)−3][1−3 tan2 (A)]=−3[1−3 tan2 (A)][1−3 tan2 (A)]
=-3