wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that following identities:

tan θ tan (θ+60)+tan θ tan(θ60)+tan(θ+60) tan(θ60)=3

Open in App
Solution

tan A× tan (A+60)+tan A×tan(A60)+tan(A+60) tan (A60)=tan (A)[tan(A)tan(60)][1+tan(A) tan(60)]+tan (A) [tan(A)+tan(60)][1tan(A) tan (60)]+{[tan(A)tan(60)][1+tan(A) tan(60)]}{[tan(A)+tan(60)][1tan(A) tan(60)]}

=tan(A)[tan(A)tan(60)][1tan(A) tan(60)][1tan2(A) tan2(60)] + tan(A) [tan(A)+tan(60)][1+tan(A)tan(60)][1tan2 (A)tan2(60)]+[tan(A)tan(60)][tan(A)+tan(60)][1tan2(A) tan2(60)]

=tan(A) [tan(A)3][13 tan (A)][13 tan2(A)]+tan (A)[tan(A)+3][1+3tan(A)][13 tan2 (A)]+[tan(A)3][tan(A)+3][13 tan2 (A)]tan(A) [4tan(A)33 tan2 (A)][13 tan2 (A)]+tan (A) 4 tan(A)+3+3tan2(A)[13 tan2 (A)]+[tan2 (A)3][13 tan2 (A)]

=[9 tan2 (A)3][13 tan2 (A)]=3[13 tan2 (A)][13 tan2 (A)]

=-3


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon