If A+B+C =π, prove that cos A + cos B - cos C = (4cosA2cosB2sinC2)−1
Prove that 1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)=tanA2cot(B2).
If A+B=π3 and cosA+cosB=1 then find the value of cosA−B2