Prove that for any complex number z, |Re(z)|+|Im(z)|≤|z|√2 or |x|+|y|≤√2|x+iy|
Open in App
Solution
Let z=x+iy=reiθ=r(cosθ+isinθ)|x|+|y| =r[|cosθ|+|sinθ|] Squaring both sides (r+ivealways) [|x|+|y|]2=r2[1+|2sinθcosθ|] =r2[1+|sin2θ|] <r2[1+1]∵|sinx|≤1 ∴|x|+|y|≤r√2 ∴|Rez|+|Imz|≤√2|z|∵|z|=r or ∴|x|+|y|≤√2|x+iy|