wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that for any prime positive integer p, p is an irrational number.

Open in App
Solution

Let p be a rational number.
Also a and b are rational.
then,p=ab
on squaring both sides,we get,
(p)2=a2b2
→p = a2b2
→b² = a2p [p divides a² so,p divides a]
Let a= pr for some integer r
→b² = (pr)²p
→b² = p2r2p
→b² = pr²
→r² = b²p [p divides b² so, p divides b]
Thus p is a common factor of a and b.
But this is a contradiction, since a and b have no common factor. ( any rational number can be written in the form of ab where a and b are co prime ie they dont have any common factor other than 1.)
This contradiction arises by assuming √p a rational number.
Hence,√p is irrational number


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Revisiting Irrational Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon