wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
For any ABC, acosBcosC+bcosCcosA+ccosAcosB=ΔR where R=abc4Δ.

Open in App
Solution

acosBcosC+bcosCcosA+ccosAcosB

=cosC(acosB+bcosA)+ccosAcosB
=cosC(c)+ccosAcosB ....... [Since acosB+bcosA=c]

=c(cosC+cosAcosB)
=c(cos{π(A+B)}+cosAcosB) ...... [Since A+B+C=π]

=c(cos{(A+B)}+cosAcosB)
=c(sinAsinB)

=c.a2R.b2R ...... [Since, sinA=a2R and sinB=b2R]

=abc4R2

=abc4RR

=ΔR.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon