wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1OA+1OB=2OC.
1244341_bcd5cad61e674dc49c7ddd6a989ff108.png

Open in App
Solution

In ΔOAF and ΔOBD,
O=O ...[Common angle]
OAE=OBD ...[Each 90o]
ΔOAFΔOBD ...[AA similarity criterion]
OAOB=FADB ...(i) [CSST]
Similarly,
ΔFACΔEBC ...[AA similarity criterion]
FAEB=ACBC ...[CSST]
But EB=DB ...[Given]
FADB=ACBC ...(ii)
From (i) and (ii), we get
OAOB=ACBC
OAOB=OCOAOBOC ... [AC=OCOA and BC=OBOC]
OA×(OBOC)=OB×(OCOA)
OA×OBOA×OC=OB×OCOB×OA
OA×OB+OA×OB=OA×OC+OB×OC
(OA+OB)×OC=2OA×OB
Dividing both sides by OA×OB×OC , we get
(OA+OB)×OCOA×OB×OC=2OA×OBOA×OB×OC
OAOA×OB+OBOA×OB=2OC
1OB+1OA=2OC
i.e. 1OA+1OB=2OC
Hence proved

1346009_1244341_ans_ce734fa949d744c38b55e6b71cdc3ded.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon