In ΔOAF and ΔOBD,∠O=∠O ...[Common angle]
∠OAE=∠OBD ...[Each 90o]
∴ΔOAF∼ΔOBD ...[AA similarity criterion]
⇒OAOB=FADB ...(i) [CSST]
Similarly,
ΔFAC∼ΔEBC ...[AA similarity criterion]
⇒FAEB=ACBC ...[CSST]
But EB=DB ...[Given]
∴FADB=ACBC ...(ii)
From (i) and (ii), we get
OAOB=ACBC
⇒OAOB=OC−OAOB−OC ... [∵AC=OC−OA and BC=OB−OC]
⇒OA×(OB−OC)=OB×(OC−OA)
∴OA×OB−OA×OC=OB×OC−OB×OA
⇒OA×OB+OA×OB=OA×OC+OB×OC
⇒(OA+OB)×OC=2OA×OB
Dividing both sides by OA×OB×OC , we get
(OA+OB)×OCOA×OB×OC=2OA×OBOA×OB×OC
⇒OAOA×OB+OBOA×OB=2OC
⇒1OB+1OA=2OC
i.e. 1OA+1OB=2OC
Hence proved