Prove that : 1−tan2(45∘−A)1+tan2(45∘−A)=sin2A
LHS=1−tan2(45∘−A)1+tan2(45∘−A)
=1−tan2(45∘−A)sec2(45∘−A)
=1sec2(45∘−A)−tan2(45∘−A)sec2(45∘−A)
=cos2(45∘−A)−sin2(45∘−A) [∵tanθsecθ=sinθcosθ1cosθ=sinθ]
=cos{2(45∘−A)} [∵cos2A=cos2A−sin2A]
=cos(90∘−2A)
=sin2A=RHS [∵cos(90−θ)=sinθ]