wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 9π894sin1(13)=94sin1(223)

Open in App
Solution

Given

9π894sin1(13)=94sin1(223)9π8=94sin1(13)+94sin1(223)9π8=94[sin1(13)+sin1(223)]RHS=94[sin1(13)+sin1(223)]=94[sin1{131(223)2+2231(13)2}]
[ sin1x+sin1y=sin1(x1y2+y1x2)]=94[sin1(13×13+223×223)]=94[sin1(19+89)]=94sin1(1)=94×π2=9π8=LHS.

Alternative method
LHS=9π894sin1(13)=94(π2sin1(13))=94(cos1(13))[ sin1x+cos1x=π2]=94sin11(12)2 [cos1x=sin11x2]=94sin1119=94sin1223=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon