Consider the given function:
c01+c23+c45+......+=2nn+1
L.H.S
=11+n(n−1)2!3+n(n−1)(n−2)(n−3)4!5+......
=1n+1[(n+1)+n(n−1)(n+1)3!+n(n−1)(n−2)(n−3)(n+1)5!......
putthan(n+1)=m
n=(m−1)
=1m[m+m(m−1)(m−2)3!+m(m−1)(m−2)(m−3)5!......]
=1m[m+mc3+mc5+......]
=1m[mc1+mc3+mc5+.......]
=1m[2(m−1)]
=2nn+1R.H.S
Hence this is the answer.
.