wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cos3θcos3θcosθ+sin3θ+sin3θsinθ=3

Open in App
Solution

To prove:- cos3θcos3θcosθ+sin3θ+sin3θsinθ=0
Proof:-
Using trigonometric identity:
sin3θ=3sinθ4sin3θsin3θ+sin3θ=3sinθ3sin3θ
cos3θ=4cos3θ3cosθcos3θcos3θ=3cosθ3cos3θ
Taking L.H.S.-
cos3θcos3θcosθ+sin3θ+sin3θsinθ
=3cosθ3cos3θcosθ+3sinθ3sin3θsinθ
=3cosθ(1cos2θ)cosθ+3sinθ(1sin2θ)sinθ
=3sin2θ+3cos2θ
=3(sin2θ+cos2θ)
=3 =R.H.S
Hence Proved.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon