Prove that:
cos θ1−sin θ=tan (π4+θ2)
cos θ1−sin θ=cos2 θ2−sin2 θ2θsin2 θ2+cos2 θ2−2 sin θ2.cos θ2[∵ cos 2A=cos2A−sin2 Aand sin2 A+cos2 A=1]=(cos θ2−sin θ2)(cos θ2+sin θ2)(cos θ2−sin θ2)2=cos θ2+sin θ2cos θ2−sin θ2
Dividing numerator and denominator by cos θ2
=1+tan θ21−tan θ2=tan (π4+θ2)=RHS