wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

cos θ1sin θ=tan (π4+θ2)

Open in App
Solution

cos θ1sin θ=cos2 θ2sin2 θ2θsin2 θ2+cos2 θ22 sin θ2.cos θ2[ cos 2A=cos2Asin2 Aand sin2 A+cos2 A=1]=(cos θ2sin θ2)(cos θ2+sin θ2)(cos θ2sin θ2)2=cos θ2+sin θ2cos θ2sin θ2

Dividing numerator and denominator by cos θ2

=1+tan θ21tan θ2=tan (π4+θ2)=RHS


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon