wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosθsinθ+1cosθ+sinθ1=cosecθ+cotθ.

Open in App
Solution

LHS (cosθsinθ+1)(cosθsinθ+1)(cosθ+sinθ1)(cosθ+sinθ+1)=cos2θ+sinθcosθsinθcossin2θsin2θ+cosθ+sinθ+1[(cosθ+sinθ)21]
=(cos2θ+sin2θ)+2cosθ+1sin2θ+cos2θ+2sinθcosθ1=2cos2θ+2cosθ1+2sinθcosθ1=2cosθ(cosθ+1)2sinθcosθ
=cosθ+1sinθ=cosθsinθ+1sinθ=cosecθ+cotθ = RHS
LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon