We have,
L.H.S.
cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ
=cos3θ+cos7θ+2cos5θcosθ+cos5θ+2cos3θ
=2cos3θ+7θ2cos3θ−7θ2+2cos5θ2cosθ+5θ2cosθ−5θ2+2cos3θ
=2cos5θcos(−2θ)+2cos5θ2cos3θcos(−2θ)+2cos3θ
=2cos5θ(cos2θ+1)2cos3θ(cos2θ+1)∴cos(−θ)=cosθ
=cos5θcos3θ
=cos(3θ+2θ)cos3θ
=cos3θcos2θ−sin3θsin2θcos3θ
=cos3θcos2θcos3θ−sin3θsin2θcos3θ
=cos2θ−sin2θtan3θ
R.H.S.
Hence, this is the answer.