wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : cos3Θ+2cos5Θ+cos7ΘcosΘ+2cos3Θ+cos5Θ=cos2Θsin2Θtan3Θ

Open in App
Solution

We have,

L.H.S.

cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ

=cos3θ+cos7θ+2cos5θcosθ+cos5θ+2cos3θ

=2cos3θ+7θ2cos3θ7θ2+2cos5θ2cosθ+5θ2cosθ5θ2+2cos3θ

=2cos5θcos(2θ)+2cos5θ2cos3θcos(2θ)+2cos3θ

=2cos5θ(cos2θ+1)2cos3θ(cos2θ+1)cos(θ)=cosθ

=cos5θcos3θ

=cos(3θ+2θ)cos3θ

=cos3θcos2θsin3θsin2θcos3θ

=cos3θcos2θcos3θsin3θsin2θcos3θ

=cos2θsin2θtan3θ

R.H.S.

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon