Prove that sec 8θ−1sec 4θ−1=tan 8θtan 2θ
LHS = sec 8 θ−1sec 4 θ−1=1cos 8θ−11cos 4θ−1=1−cos 8θcos 8θ1−cos 8θcos 4θ=(1−cos 8θ1−cos 4θ)(cos 4θcos 8θ) [1]
= 2 sin2 4θ2 sin2 2θ.cos 4θcos 8θ=2 sin 4θ.cos 4θ.sin 4θ2 sin2 2θ.cos 8θ [∵ 1−cos2A=2sin2 a] [1]
= sin 8θ.sin 4θcos 8θ.2 sin22θ=sin 8θ.2 sin2θ.cos2θcos 8θ.2 sin22θ
= sin 8θcos 8θ.cos2θsin2θ=tan 8θtan2θ=RHS [∵ sin2A=2 sin Acos A] [2]