wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

sec θ+tan θ1tan θsec θ+1=cos θ(1sin θ) [4 MARKS]

Open in App
Solution

Formula: 1 Mark
Concept: 1 Mark
Application: 2 Marks

sec θ+tan θ1tan θsec θ+1

=(sec θ+tan θ)(sec2 θtan2 θ)(tan θsec θ+1) [sec2 θtan2 θ=1]

=(sec θ+tan θ)[1(sec θtan θ)](tan θsec θ+1)

=(sec θ+tan θ)(tan θsec θ+1)(tan θsec θ+1)=(sec θ+tan θ)

=(1cos θ+sin θcos θ)=(1+sin θ)cos θ=(1+sin θ)cos θ×(1sin θ)(1sin θ)

=(1sin2 θ)cos θ(1sin θ)=cos2 θcos θ(1sin θ)=cos θ(1sin θ)

Hence,
sec θ+tan θ1tan θsec θ+1=cos θ(1sin θ)

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon