Prove that:
tanA+tanBcotA+cotB=tan A tan B
L.H.S.=tanA+tanBcotA+cotBtanA+tanB1tanA+1tanB=tanA+tanBtanA+tanBtanA tanB=tanA tanB=R.H.S.
Prove that: tanA+tanBtanA−tanB=sin(A+B)sin(A−B)
Prove that : tanA−tanBcotB−cotA=tanBcotA