Prove that cosx(1−sin x)=tan (π4+x2)
We have LHS = cos x(1−sin x)
=(cos2x2−sin2x2)(cos2x2+sin2x2−2 sin x2 cosx2)
⎡⎣∵ cos x=(cos2x2−sin x2,)cos2x2+sin2 x2=1and sinx=2sinx2cosx2 ⎤⎦
=(cos x2−sin x2)(cos x2+sinx2)(cosx2−sinx2)2
=(cosx2+sinx2)(cosx2−sinx2)=(1+tanx2)(1−tanx2)=(tanπ4+tanx2)(1−tanπ4.tan x2)
[dividing num. and denom. by cosx2]
=tan(x4+x2) = RHS