wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that cosx(1sin x)=tan (π4+x2)

Open in App
Solution

We have LHS = cos x(1sin x)

=(cos2x2sin2x2)(cos2x2+sin2x22 sin x2 cosx2)

cos x=(cos2x2sin x2,)cos2x2+sin2 x2=1and sinx=2sinx2cosx2

=(cos x2sin x2)(cos x2+sinx2)(cosx2sinx2)2

=(cosx2+sinx2)(cosx2sinx2)=(1+tanx2)(1tanx2)=(tanπ4+tanx2)(1tanπ4.tan x2)

[dividing num. and denom. by cosx2]

=tan(x4+x2) = RHS


flag
Suggest Corrections
thumbs-up
49
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon