The given function can be rewritten as fx=x-xx, when x>0x+xx, when x<02, when x=0 ⇒ fx=0, when x>02, when x<02, when x=0 We have (LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→02=2 (RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→00=0 ∴ limx→0-fx≠limx→0+fx Thus, f(x) is discontinuous at x = 0.
Let f(x) = x + 1; where xϵ[0,∞]. Choose the right option.