Prove that:
(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1
(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
(i)
To prove: 13+√7+1√7+√5+1√5+√3+1√3+1=1
Lets take LHS and then equate it to RHS.
LHS =13+√7+1√7+√5+1√5+√3+1√3+1
Lets do rationalize the denominator of each term,
=[13+√7×3−√73−√7]+[1√7+√5×√7−√5√7−√5]+[1√5+√3×√5−√3√5−√3]+[1√3+1×√3−1√3−1]
=3−√732−(√7)2+√7−√5(√7)2−(√5)2+√5−√3(√5)2−(√3)2+√3−1(√3)2−12
=3−√79−7+√7−√57−5+√5−√35−3+√3−13−1
=3−√72+√7−√52+√5−√32+√3−12
=3−√7+√7−√5+√5−√3+√3−12
=22
=1
= RHS
∴ LHS = RHS
Hence, proved.
(ii)
To prove:
11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Lets take LHS and then equate it to RHS.
LHS =11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9
Lets do rationalize the denominator of each term,
=[11+√2×√2−1√2−1]+[1√2+√3×√3−√2√3−√2]+[1√4+√3×√4−√3√4−√3]+[1√4+√5×√5−√4√5−√4]+[1√5+√6×√6−√5√6−√5]+[1√6+√7×√7−√6√7−√6]+[1√7+√8×√8−√7√8−√7]+[1√8+√9×√9−√8√9−√8]
=√2−1(√2)2−12+√3−√2(√3)2−(√2)2+√4−√3(√4)2−(√3)2+√5−√4(√5)2−(√4)2+√6−√5(√6)2−(√5)2+√7−√6(√7)2−(√6)2+√8−√7(√8)2−(√7)2+√9−√8(√9)2−(√8)2
=√2−12−1+√3−√23−2+√4−√34−3+√5−√45−4+√6−√56−5+√7−√67−6+√8−√78−7+√9−√89−8
=√2−11+√3−√21+√4−√31+√5−√41+√6−√51+√7−√61+√8−√71+√9−√81
=√2−1+√3−√2+√4−√3+√5−√4+√6−√5+√7−√6+√8−√7+√9−√8
=√9−1
=3−1
=2
∴ LHS = RHS
So, 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Hence, proved.