wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) 2sin5π12sinπ12=12

(ii) 2cos5π12cosπ12=12

(iii) 2sin5π12cosπ12=3+22

Open in App
Solution

(i)
LHS = 2sin 5π12 sin π12 = cos 5π12 - π12 - cos 5π12 + π12 2 sin A sin B = cos (A - B) - cos (A + B)= cos π3 - cos π2= 12 - 0= 12RHS = 12Hence, LHS = RHS

(ii)
LHS = 2cos 5π12 cos π12 = cos 5π12 + π12 + cos 5π12 - π12 2 cos A cos B = cos (A+B) + cos (A-B)= cos π2 + cos π3= 0 + 12= 12RHS = 12Hence, LHS = RHS

(iii)
LHS = 2sin 5π12 cos π12 = sin 5π12 + π12 + sin 5π12 - π12 2 sin A cos B = sin (A + B) + sin (A - B)= sin π2 + sin π3= 1 + 32= 2 + 32RHS = 2 + 32Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon