1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Prove that:i ...
Question
Prove that:
(i)
2
sin
5
π
12
sin
π
12
=
1
2
(ii)
2
cos
5
π
12
cos
π
12
=
1
2
(iii)
2
sin
5
π
12
cos
π
12
=
3
+
2
2
Open in App
Solution
(i)
LHS
=
2
sin
5
π
12
sin
π
12
=
cos
5
π
12
-
π
12
-
cos
5
π
12
+
π
12
∵
2
sin
A
sin
B
=
cos
(
A
-
B
)
-
cos
(
A
+
B
)
=
cos
π
3
-
cos
π
2
=
1
2
-
0
=
1
2
RHS
=
1
2
Hence
,
LHS
=
RHS
(ii)
LHS
=
2
cos
5
π
12
cos
π
12
=
cos
5
π
12
+
π
12
+
cos
5
π
12
-
π
12
∵
2
cos
A
cos
B
=
cos
(
A
+
B
)
+
cos
(
A
-
B
)
=
cos
π
2
+
cos
π
3
=
0
+
1
2
=
1
2
RHS
=
1
2
Hence
,
LHS
=
RHS
(iii)
LHS
=
2
sin
5
π
12
cos
π
12
=
sin
5
π
12
+
π
12
+
sin
5
π
12
-
π
12
∵
2
sin
A
cos
B
=
sin
(
A
+
B
)
+
sin
(
A
-
B
)
=
sin
π
2
+
sin
π
3
=
1
+
3
2
=
2
+
3
2
RHS
=
2
+
3
2
Hence
,
LHS
=
RHS
Suggest Corrections
0
Similar questions
Q.
Prove that:
(i)
2
s
i
n
5
π
12
s
i
n
π
12
=
1
2
(ii)
2
c
o
s
5
π
12
c
o
s
π
12
(iii)
2
s
i
n
5
π
12
c
o
s
5
π
12
=
√
3
+
2
2
Q.
Prove that:
(i)
tan
4
π
-
cos
3
π
2
-
sin
5
π
6
cos
2
π
3
=
1
4
(ii)
sin
13
π
3
sin
8
π
3
+
cos
2
π
3
sin
5
π
6
=
1
2
(iii)
sin
13
π
3
sin
2
π
3
+
cos
4
π
3
sin
13
π
6
=
1
2
(iv)
sin
10
π
3
cos
13
π
6
+
cos
8
π
3
sin
5
π
6
=
-
1
(v)
tan
5
π
4
cot
9
π
4
+
tan
17
π
4
cot
15
π
4
=
0
Q.
Prove that:
(i) tan 720° − cos 270° − sin 150° cos 120° =
1
4
(ii) sin 780° sin 480° + cos 120° sin 150° =
1
2
(iii) sin 780° sin 120° + cos 240° sin 390 =
1
2
(iv) sin 600° cos 390° + cos 480° sin 150° = −1
(v) tan 225° cot 405° + tan 765° cot 675° = 0
Q.
Prove that:
(i) tan 225° cot 405° + tan 765° cot 675° = 0
(ii)
sin
8
π
3
cos
23
π
6
+
cos
13
π
3
sin
35
π
6
=
1
2
(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° =
1
2
(iv) tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
(v) cos 570° sin 510° + sin (−330°) cos (−390°) = 0
(vi)
tan
11
π
3
-
2
sin
4
π
6
-
3
4
cosec
2
π
4
+
4
cos
2
17
π
6
=
3
-
4
3
2
(vii)
3
sin
π
6
sec
π
3
-
4
sin
5
π
6
cot
π
4
=
1
Q.
Prove that:
(i)
c
o
s
2
45
∘
−
s
i
n
2
15
∘
=
√
3
4
(ii)
S
i
n
2
(
n
+
1
)
A
−
s
i
n
2
n
A
=
s
i
n
(
2
n
+
1
)
A
s
i
n
A
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Property 5
MATHEMATICS
Watch in App
Explore more
Properties Derived from Trigonometric Identities
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app