Prove that : (i) (A∪B)×C=(A×C)∪(B×C)
(ii) (A∩B)×C=(A×C)∩(B×C).
(i) Let (a, b) be an arbitary element of (A∪B)×C. Then,
(a,b)ϵ(A∪B)×C
⇒aϵA∪B and bϵC [By defination]
⇒(aϵA) and bϵC) or (a \epsilon A)\) and bϵC)
⇒(a,b)ϵA×C or (a, b) ϵB×C
⇒(a,b)ϵ(A×C)∪(B×C)
⇒(a,b)ϵ(A∪B)×C
⇒(a,b)ϵ(A×C)∪(B×C)
⇒(A∪B)×C⊆(A×C)∪(B×C) ....(i)
Again, let (x, y) be an arbitary element of (A×C)∪(B×C). Then,
(x,y)ϵ(A×C)∪(B×C)
⇒(x,y)ϵA×C or (x, y) \epsilon B \times C\)
⇒xϵA and yϵ C or xϵB and yϵC
⇒(xϵA∪B) and yϵC
⇒(x,y)ϵ(A∪B)×C
⇒(x,y)ϵ(A×C)∪(B×C)
⇒(x,y)ϵ(A∪B)×C
⇒(A×C)∪(B×C)⊆(A∪B)×C ....(i)
Using equation (i) and equation (ii), we get (A∪B)×C=(A×C)∪(B×C)
Hence proved.
(ii) Let (a, b) be an arbitary element of (A∩B)×C. Then,
(a,b)ϵ(A∩B)×C
⇒aϵA∩B and bϵC
⇒(aϵA and aϵB) and bϵC
[By defination]
⇒(aϵA and bϵC) and (aϵB and bϵC)
⇒(a,b)ϵA×C and (a,b)ϵB×C
⇒(a,b)ϵ(A×C)∩(B×C)
⇒(a,b)ϵ(A∩C)×C
⇒(a,b)ϵ(A×C)∩(B×C)
⇒(A∩C)×C⊆(A×C)∩(B×C) ....(i)
Let (x, y) be an arbitary element of (A×C)∩(B×C). Then,
(x,y)ϵ(A×C)∩(B×C)
⇒(x,y)ϵA×C and (x,y)ϵB×C
[By defination]
⇒(xϵA and yϵC) and (xϵB and yϵC)
⇒(xϵA and xϵB) and yϵC
⇒xϵA∩B and yϵC
⇒(x,y)ϵ(A∩B)×C
⇒(A×C)∩(B×C)⊆(A∩B)×C ....(ii)
Using equation (i) and equation (ii), we get (A∩B)×C=(A×C)∩(B×C)
Hence proved.