(i) cos245∘−sin215∘=√34
(1√2)2−sin215∘
=12−(1−cos2×15∘2)
=12−(1−cos30∘2)
=1−1+cos30∘2
=cos30∘2
=√31×12=√34
=RHS
∴LHS=RHS
Hence proved.
(ii) LHS: sin2(n+1)A−sin2nA
=sin[(n+1)A+nA]sin[(n+1)A-nA]
=sin[nA+A+nA]sin[nA+A-nA]
=sin(2nA+A)sin(A)
=sin(2n+1)AsinA
=RHS
∵LHS=RHS
Hence proved.