wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos A2 cos 3A2 sin 3A
(iv) sin 3A + sin 2A − sin A = 4 sin A cos A2 cos 3A2
(v) cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −34
(vi) sinθ2sin7θ2+sin3θ2sin11θ2= sin 2θ sin 5θ.

Open in App
Solution

(i)

Consider LHS: cos 3A + cos 5A + cos 7A + cos 15A= 2cos 3A + 5A2 cos 3A - 5A2 + 2cos 7A + 15A2 cos 7A - 15A2 cos A + cos B = 2cos A + B2 cos A - B2= 2cos 4A cos-A + 2cos 11A cos-4A

= 2cos 4A cos A + 2cos 11A cos 4A= 2cos 4A cos A + cos 11A= 2cos 4A×2cos A + 11A2 cos A - 11A2= 4cos 4A cos 6A cos-5A= 4cos 4A cos 5A cos 6A= RHSHence, LHS=RHS

(ii)

Consider LHS: cos A + cos 3A + cos 5A + cos 7A=2cos A + 3A2 cos A - 3A2 + 2cos 5A + 7A2 cos 5A - 7A2 cosA+cosB=2cosA+B2cosA-B2= 2cos 2A cos-A + 2cos 6A cos-A

= 2cos 2A cos A + 2cos 6A cos A= 2cos A(cos 2A + cos 6A)=2cos A×2cos 2A + 6A2 cos 2A - 6A2= 4cos A cos 4A cos-2A= 4cos A cos 2A cos 4A= RHSHence, LHS=RHS.

(iii)

Consider LHS: sin A + sin 2A + sin 4A + sin 5A= 2sin A + 2A2 cos A - 2A2 + 2sin 4A + 5A2 cos 4A - 5A2 sin A + sin B = 2sin A + B2 cos A - B2= 2sin 32A cos -A2 + 2sin 92A cos -A2

= 2sin 32A cos A2 + 2sin 92A cos A2= 2cos A2sin 32A + sin 92A= 2cos A2×2sin 32A + 92A2 cos 32A - 92A2= 4cos A2 cos 3A cos -32A= 4cos A2 cos 32A cos 3A= RHSHence, LHS=RHS

(iv)

Consider LHS:= sin 3A + sin 2A - sin A= 2sin 3A + 2A2 cos 3A - 2A2 - sinA sin A + sin B = 2sin A + B2 cos A - B2= 2sin 52A cos A2 - sin A

= 2sin 52A cos A2 - 2sin A2 cos A2= 2cos A2 sin 52A - sin A2= 2cos A2 × 2sin 52A - A22 cos 52A + A22= 4cos A2 sin A cos 32A= 4sin A cos A2 cos 32A= RHSHence, LHS=RHS

(v)

Consider LHS: cos 20° cos 100° + cos 100° cos 140° - cos 140° cos 200°=12(2cos 20° cos 100° + 2cos 100° cos 140° - 2cos 140° cos 200°)=12cos100°+20°cos 100°-20° +cos 140°+100°cos 140°-100°-cos 200°+140°cos 200°-140°=12cos120°+cos80°+cos240°+cos40°-cos340°-cos60° =12cos120°+cos240°-cos60°+cos80°+cos40°-cos340°=12-12-12-12+cos80°+cos40°-cos340°=12-32+2cos80°+40°2cos80°-40°2-cos360°-20°=12-32+2cos60°cos20°-cos20°=12-32+cos20°-cos20°=12-32=-34=RHSHence, LHS=RHS


(vi)
LHS =sinθ2sin7θ2+sin3θ2sin11θ2=122sinθ2sin7θ2+2sin3θ2sin11θ2=12cos7θ2-θ2-cos7θ2+θ2+cos11θ2-3θ2-cos11θ2+3θ2=12cos3θ-cos4θ+cos4θ-cos7θ=12cos3θ-cos7θ=12-2sin3θ+7θ2sin3θ-7θ2=12-2sin5θsin-2θ=sin5θsin2θ=RHS

Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon