Prove that: (i) cos3A+cosSA+cos7A+cos15A 4cos4A cosSA cos6A (ii) cosA+cos3A+cos5A+cos7A=4cosA cos2A cos4A (iii) sinA+sin2A+sin4A+sin5A 4cosA2cos3Asin3A (iv) sin3A+sin2A+sinA−4 sinA cosA2cos3A2 (v) cos20∘cos100∘+cos100∘ cos140cos200°=−34
(vi) sinθ2sin7θ2+sin3θ2sin11θ2=sin2θ sin5θ (vii) sinθ2−cos3θ cos=9θ2=sin7θ sin8θ
8. Prove that : (i) sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A (ii) (ii)cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3A (iii) cos4A+cos3A+cos2Acos4A+sin3A+sin2A=cot3A (iv) sin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A (v) sin5A−sin7A+sin8A−sin4Acos4A+cos7A+cos7A−cos5A−cos8A=cot6A (vi) sin5A+cos2A−sin6A cosAsinA sin2A−cos2A cos3A=tanA (vii) sin11A+sinA+sin7A+sin3Acos11A sinA+cos7A sin3A=tan8A (viii) sin3A cos4A−sinA cos2Asin4A sinA+cos6A cosA=tan2A (ix) sinA sin2A+sin3A sin6AsinA cos2A+cos3A cos6A=tan5A (x) sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A (xi) sin(θ+ϕ)−2sinθ+sin(θ+ϕ)cos(θ+ϕ)−2cosθ+cos(θ+ϕ)