Prove that: (i) cos3A+cosSA+cos7A+cos15A 4cos4A cosSA cos6A (ii) cosA+cos3A+cos5A+cos7A=4cosA cos2A cos4A (iii) sinA+sin2A+sin4A+sin5A 4cosA2cos3Asin3A (iv) sin3A+sin2A+sinA−4 sinA cosA2cos3A2 (v) cos20∘cos100∘+cos100∘ cos140cos200°=−34
(vi) sinθ2sin7θ2+sin3θ2sin11θ2=sin2θ sin5θ (vii) sinθ2−cos3θ cos=9θ2=sin7θ sin8θ