wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) cos 55+cos 65+cos 175=0
(ii) sin 50sin 70+sin 10=0
(iii) cos 80+cos 40cos 20=0
(iv) cos 20+cos 100+cos 140=0
(v) sin5π18cos4π9=3sinπ9
(vi) cosπ12sinπ12=12
(vii) sin 80cos 70=cos 50
(viii) sin 51cos 81=cos21

Open in App
Solution

(i) cos 55+cos 65+cos 175=0cos 175=cos5
substitute above value in the equation we get
cos55+cos65=cos5
applying rule cos A+cos B=2cos
(A+B2)cos(AB2)cos55+cos65=2cos(65+552)cos(65552)=2cos60 cos5=2×12×cos5=cos5

(ii) sin 50sin 70+sin 10=0(sin 50sin 70)+sin 10(2sin(50702))cos(2sin(50+702))+sin10[sin csin D=2sin(CD2)cos(C+D2)]=2isn(10)cos60+sin10=2sin10×12+sin10[cos60=12]=0=RHS

(iii) cos 80+cos 40cos 20=0(cos 80+cos 40)cos 20=2cos(80+402)cos(80402)cos20[cos C+cos D=2cos(C+D2)cos(CD2)]=2cos60+cos20cos20=2×12cos20cos20=cos20cos20=0=RHS

(iv) cos 20+cos 100+cos 140=0(cos 20+cos 100)+cos 140=2cos(20+1002)cos(201002)+cos140[cos C+cos D=2cos(C+D2)cos(CD2)]=2cos60+cos(40)+cos140=2×12cos40+cos140[cos60=12]=cos40+cos(18040)=cos40cos40=0=RHS

(v) sin5π18cos4π9=3sinπ9LHS=sin5π18cos4π9=sin50cos80=sin50sin10=2sin(50102)cos(50+102)=2sin20 cos30=2sin20×32=3sinπ9=RHS.

(vi) cosπ12sinπ12=12
Multiplying and dividing by 2 on LHS
=2(12cosπ1212sinπ12)
=2(sinπ4cosπ12cosπ4sinπ12)
[12=cosπ4=sinπ4]
=2(sin(π4π12))
[sin(AB)=sin A cos Bcos A sin B]
=2(π6)

=2×12=12=RHS

(vii) sin 80cos 70=cos 50
LHS=sin 80=cos 50+cos 70
Now,
cos C+cos D=2cos C+D2cosCD2

RHS=cos50+cos70=2cos(50+702)cos(50702)=2cos60+cos(10)=2×12cos10[cos(θ)=cosθ]=cos10=sin80=LHS[cosθ=cosθ]=cos10=sin80=LHS[cosθ=sin(90θ)]

(viii) sin 51cos 81=cos21sin 51=cos 21cos81RHS=cos 21cos81=2sin(51)sin(30)[cosCcosD=2sinC+D2sinCD2]=+2sin(51)sin(30)=2sin51×12=sin51=LHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon