Prove that:
(i) cos 55∘+cos 65∘+cos 175∘=0
(ii) sin 50∘−sin 70∘+sin 10∘=0
(iii) cos 80∘+cos 40∘−cos 20∘=0
(iv) cos 20∘+cos 100∘+cos 140∘=0
(v) sin5π18−cos4π9=√3sinπ9
(vi) cosπ12−sinπ12=1√2
(vii) sin 80∘−cos 70∘=cos 50∘
(viii) sin 51∘−cos 81∘=cos21∘
(i) cos 55∘+cos 65∘+cos 175∘=0cos 175∘=−cos5
substitute above value in the equation we get
cos55+cos65=cos5
applying rule cos A+cos B=2cos
(A+B2)cos(A−B2)cos55+cos65=2cos(65+552)cos(65−552)=2cos60 cos5=2×12×cos5=cos5
(ii) sin 50∘−sin 70∘+sin 10∘=0(sin 50∘−sin 70∘)+sin 10∘⇒(2sin(50∘−70∘2))cos(2sin(50∘+70∘2))+sin10∘[∵sin c−sin D=2sin(C−D2)cos(C+D2)]=2isn(−10∘)cos60∘+sin10∘=−2sin10∘×12+sin10∘[∵cos60∘=12]=0=RHS
(iii) cos 80∘+cos 40∘−cos 20∘=0(cos 80∘+cos 40∘)−cos 20∘=2cos⇒(80∘+40∘2)cos(80∘−40∘2)−cos20∘[∵cos C+cos D=2cos(C+D2)cos(C−D2)]=2cos60∘+cos20∘−cos20∘=2×12cos20∘−cos20∘=cos20∘−cos20∘=0=RHS
(iv) cos 20∘+cos 100∘+cos 140∘=0⇒(cos 20∘+cos 100∘)+cos 140∘=2cos(20∘+100∘2)cos(20∘−100∘2)+cos140∘[∵cos C+cos D=2cos(C+D2)cos(C−D2)]=2cos60∘+cos(−40∘)+cos140∘=2×12cos40∘+cos140∘[∵cos60∘=12]=cos40∘+cos(180∘−40∘)=cos40∘−cos40∘=0=RHS
(v) sin5π18−cos4π9=√3sinπ9LHS=sin5π18−cos4π9=sin50∘−cos80∘=sin50∘−sin10∘=2sin(50∘−10∘2)cos(50∘−+10∘2)=2sin20∘ cos30∘=2sin20∘×√32=√3sinπ9=RHS.
(vi) cosπ12−sinπ12=1√2
Multiplying and dividing by √2 on LHS
=√2(1√2cosπ12−1√2sinπ12)
=√2(sinπ4cosπ12−cosπ4sinπ12)
[∵1√2=cosπ4=sinπ4]
=√2(sin(π4−π12))
[∵sin(A−B)=sin A cos B−cos A sin B]
=√2(π6)
=√2×12=1√2=RHS
(vii) sin 80∘−cos 70∘=cos 50∘
LHS=sin 80∘=cos 50∘+cos 70∘
Now,
cos C+cos D=2cos C+D2cosC−D2
RHS=cos50∘+cos70∘=2cos(50∘+70∘2)cos(50∘−70∘2)=2cos60∘+cos(−10∘)=2×12cos10∘[cos(−θ)=cosθ]=cos10∘=sin80∘=LHS[∵cos−θ=cosθ]=cos10∘=sin80∘=LHS[∵cosθ=sin(90−θ)]
(viii) sin 51∘−cos 81∘=cos21∘sin 51∘=cos 21∘−cos81∘RHS=cos 21∘−cos81∘=−2sin(51∘)sin(−30∘)[∵cosC−cosD=−2sinC+D2sinC−D2]=+2sin(51∘)sin(−30∘)=2sin51∘×12=sin51∘=LHS