wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that,

(i) cos α+cos β+cos γ+cos(α+β+γ)=4 cos(α+β2). cos(β+γ2). cos(γ+α2).

(ii) If tan x=ba, then a+bab+aba+b=2 cos xcos 2x.

Open in App
Solution

LHS = cos α+cos β+cos γ+cos (α+β+γ)

= (cos α+cos β)+[cos γ+cos (α+β+γ)]

= 2cos(α+β2).cos(αβ2)+ 2cos(γ+α+β+γ2). cos(γαβγ2)

[ cos x+cos y=2cos(x+y2)cos(xy2)]

= 2cos(α+β2). cos(αβ2)+2cos(α+β+2γ2). cos(α+β2)

[ cos (x)=cos x]

= 2cos (α+β2)[cos (αβ2)+cos(α+β+2γ2)]

= 2cos(α+β2)[2cos(αβ2+α+β+2γ22). cos(αβ2α+β+2γ22)]

= 2cos(α+β2)[2 cos(α+γ2). cos(βγ2)]

= 2cos(α+β2)[2 cos(α+γ2). cos{((β+γ)2)}]

= 2cos(α+β2)[2 cos(α+γ2). cos(β+γ2)]

[ cos (x)=cos x]

= 4cos(α+β2). cos(β+γ2). cos(α+γ2)

= RHS Hence proved.

(ii) LHS=a+bab+aba+b=1+ba1ba+1ba1+ba

[ dividing by numerator and denominator by a]

= 1+ba+1ba(1ba)(1+ba)

= 21b2a2=21tan2 x [ tan x=ba]

= 21sin2 xcos2 x=2cos xcos2 xsin2 x

= 2cos xcos 2x=RHS [ cos2 θsin2 θ=cos 2θ]


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon