Prove that,
(i) cos α+cos β+cos γ+cos(α+β+γ)=4 cos(α+β2). cos(β+γ2). cos(γ+α2).
(ii) If tan x=ba, then √a+ba−b+√a−ba+b=2 cos x√cos 2x.
LHS = cos α+cos β+cos γ+cos (α+β+γ)
= (cos α+cos β)+[cos γ+cos (α+β+γ)]
= 2cos(α+β2).cos(α−β2)+ 2cos(γ+α+β+γ2). cos(γ−α−β−γ2)
[∵ cos x+cos y=2cos(x+y2)cos(x−y2)]
= 2cos(α+β2). cos(α−β2)+2cos(α+β+2γ2). cos(α+β2)
[∵ cos (−x)=cos x]
= 2cos (α+β2)[cos (α−β2)+cos(α+β+2γ2)]
= 2cos(α+β2)[2cos(α−β2+α+β+2γ22). cos(α−β2−α+β+2γ22)]
= 2cos(α+β2)[2 cos(α+γ2). cos(−β−γ2)]
= 2cos(α+β2)[2 cos(α+γ2). cos{(−(β+γ)2)}]
= 2cos(α+β2)[2 cos(α+γ2). cos(β+γ2)]
[∵ cos (−x)=cos x]
= 4cos(α+β2). cos(β+γ2). cos(α+γ2)
= RHS Hence proved.
(ii) LHS=√a+ba−b+√a−ba+b=√1+ba1−ba+√1−ba1+ba
[∵ dividing by numerator and denominator by a]
= 1+ba+1−ba√(1−ba)(1+ba)
= 2√1−b2a2=2√1−tan2 x [∵ tan x=ba]
= 2√1−sin2 xcos2 x=2cos x√cos2 x−sin2 x
= 2cos x√cos 2x=RHS [∵ cos2 θ−sin2 θ=cos 2θ]