Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
Prove that :i...
Question
Prove that : (i) cos2π7cos4π7cos6π7=18 (ii) cosπ11cos2π11cos3π11cos4π11cos5π11=132
Open in App
Solution
i) cos2π7cos4π7cos6π7=18 =12sin2π7[2sin(2π7)⋅cos(2π7)]cos(4π7)⋅cos(6π7) =12sin2π7[sin(4π7)⋅cos(4π7)]⋅cos(6π7) =14sin2π7[sin(8π7)⋅cos(6π7)] Using the formula of [2sinAcosB=sin(A+B)+sin(A−B)]