wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
(i) cos2π7cos4π7cos6π7=18
(ii) cosπ11cos2π11cos3π11cos4π11cos5π11=132

Open in App
Solution

i) cos2π7cos4π7cos6π7=18
=12sin2π7[2sin(2π7)cos(2π7)]cos(4π7)cos(6π7)
=12sin2π7[sin(4π7)cos(4π7)]cos(6π7)
=14sin2π7[sin(8π7)cos(6π7)]

Using the formula of [2sinAcosB=sin(A+B)+sin(AB)]
=18sin2π7[2sin(8π7)cos(6π7)]
=18sin2π7[sin(14π7)+sin(2π7)]

=18sin2π7[sin(2π)+sin(2π7)]

=18......as sin2π=0
ii) cosπ11cos2π11cos3π11cos4π11cos5π11=132
= 2sinπ11cosπ11cos2π11cos(π8π11)cos4π11cos5π112sinπ11
= 2sin2π11cos2π11cos(8π11)cos4π11cos5π114sinπ11
= 2sin4π11cos4π11cos(8π11)cos5π118sinπ11

= 2sin8π11cos(8π11)cos5π1116sinπ11
= sin16π11cos5π1116sinπ11

= sin(π+5π11)cos5π1116sinπ11

= sin(π+5π11)cos5π1116sinπ11

= 2sin(5π11)cos5π1132sinπ11

= sin(10π11)32sinπ11
= sin(ππ11)32sinπ11

=132

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon