wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) cos2π15 cos4π15 cos 8π15 cos 16π15 =116

(ii) cos π65 cos 2π65 cos4π65 cos8π65 cos16π65 cos32π65=164

Open in App
Solution

(i)

LHS=cos2π15 cos4π15 cos8π15 cos16π15

On dividing and multiplying by 2sin2π15, we get

=12sin2π15×2sin2π15×cos2π15 ×cos4π15 ×cos8π15 × cos16π15 =12×2sin2π15×2sin4π15×cos4π15 ×cos8π15 × cos16π15 =12×4sin2π152sin8π15×cos8π15 × cos16π15 =12×8sin2π152sin16π15 × cos16π15 =116sin2π15sin32π15

=-116sin2π15sin2π-32π15 sin2π-θ=-sinθ =-116sin2π15sin-2π15 =116=RHSHence proved.

(ii)

LHS=cosπ65 cos2π65cos4π65 cos8π65cos16π65 cos32π65

On dividing and multiplying by 2sinπ65, we get

=12sinπ65×2sinπ65×cosπ65 ×cos2π65×cos4π65× cos8π65×cos16π65× cos32π65 =2×sin2π652×2sinπ65×cos2π65×cos4π65× cos8π65×cos16π65× cos32π65 =2×sin4π652×4sinπ65×cos4π65× cos8π65×cos16π65× cos32π65 =2×sin8π652×8sinπ65× cos8π65×cos16π65× cos32π65

=2×sin16π652×16sinπ65×cos16π65× cos32π65 =2×sin32π652×32sinπ65× cos32π65 =sin64π6564sinπ65=sinπ-π6564sinπ65 =sinπ6564sinπ65 sinπ-θ=sinθ =164=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine and Cosine Series
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon