Prove that:
(i) a+b+ca−1b−1+b−1c−1+c−1a−1=abc
(ii) (a−1+b−1)−1=aba+b
(i) a+b+ca−1b−1+b−1c−1+c−1a−1=abc
LHS=a+b+ca−1b−1+b−1c−1+c−1a−1 {∵a−m=1am}=a+b+c1ab+1bc+1ca=a+b+cc+a+babc=(a+b+c)abc(a+b+c)=abc=RHS
(ii) (a−1+b−1)−1=aba+b
LHS=(a−1+b−1)−1=(1a+1b)−1=(b+aab)−1 {∵a−m=1am}=aba+b=RHS