wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i)cos(2π+θ)cosec(2π+θ)tan(π/2+θ)sec(π/2+θ)cosθcot(π+θ)=1

(ii)cosec(90+θ)+cot(450+θ)cosec(90θ)+tan(180θ)+tan(180+θ)+sec(180θ)tan(360+θ)sec(θ)=2

(iii)sin(180+θ)cos(90+θ)tan(270θ)cot(360θ)sin(360θ)cos(360+θ)cosec(θ)sin(270+θ)(iv)1+cotθsec(π2+θ)}1+cotθ+sec(π2+θ)}=2cotθ

(v)tan(90θ)sec(180θ)sin(θ)sin(180+θ)cot(360θ)cosec(90θ)=1

Open in App
Solution

LHS=cos(2π+θ)cosec(2π+θ)tan(π/2+θ)sec(π/2+θ)cosθcot(π+θ)

=cosθ×cosecθ(cotθ)cosecθ.cosθcotθ

tan(π2+θ)=cotθand sec(π2+θ)=cosecθ

=1 =RHS Hence proved.

(ii)LHS=cosec(90+θ)+cot(450+θ)cosec(90θ)+tan(180θ)+tan(180+θ)+sec(180θ)tan(360+θ)sec(θ)=2

=secθ+cot(2π+π2+θ)secθtanθ+tanθsecθtanθsecθ

[cosec(90+θ)=secθ,cosec(90+θ)=secθ,tan(180θ)=tanθsec(θ)=secθ]

=secθ+cot(π2+θ)secθtanθ+1[cot(2π+θ)=cotθ]

=secθtanθsecθtanθ+1[cot(π2+θ)=tanθ]

=1+1

=2 =RHS Hence proved.

(iii)LHS=sin(180+θ)cos(90+θ)tan(270θ)cot(360θ)sin(360θ)cos(360+θ)cosec(θ)sin(270+θ)

=sinθ(sinθ)cotθ(cotθ)sinθcosθ(cosecθ)(cosθ)

[tan(270θ)=cotθ and sin(270+θ)=cosθ]

=sinθ×sinθ×cosθ×cosθ×sinθsinθ×cosθ×sinθ×inθ×cosθ[cotθ=cosθsinθ and cosecθ=1sinθ]

=1=RHS Hence proved.

(iv)LHS{1+cotθsec(π2+θ)}{1+cotθ+sec(π2+θ)}

={1+cotθ(cosecθ)}{1+cotθcosecθ}[sec(π2+θ)=cosecθ]={(1+cotθ)+cosecθ}{(1+cotθ)cosecθ}

=(1+cotθ)2cosec2θ[1+cot2θ=cosec2θ]

=cosec2+2cotθcosecθ

=2cotθ=RHS Hence proved.

(v)LHS=tan(90θ)sec(180θ)sin(θ)sin(180+θ)cot(360θ)cosec(90θ)

=cotθ×(secθ)×(sinθ)sinθ×(cotθ)×secθ

=1=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon