Prove that:
(i)cos(2π+θ)cosec(2π+θ)tan(π/2+θ)sec(π/2+θ)cosθcot(π+θ)=1
(ii)cosec(90∘+θ)+cot(450∘+θ)cosec(90∘−θ)+tan(180∘−θ)+tan(180∘+θ)+sec(180∘−θ)tan(360∘+θ)−sec(−θ)=2
(iii)sin(180∘+θ)cos(90∘+θ)tan(270∘−θ)cot(360∘−θ)sin(360∘−θ)cos(360∘+θ)cosec(−θ)sin(270∘+θ)(iv)1+cotθ−sec(π2+θ)}1+cotθ+sec(π2+θ)}=2cotθ
(v)tan(90∘−θ)sec(180∘−θ)sin(−θ)sin(180∘+θ)cot(360∘−θ)cosec(90∘−θ)=1
LHS=cos(2π+θ)cosec(2π+θ)tan(π/2+θ)sec(π/2+θ)cosθcot(π+θ)
=cosθ×cosecθ(−cotθ)−cosecθ.cosθcotθ
⎡⎢⎣∵tan(π2+θ)=−cotθand sec(π2+θ)=−cosecθ⎤⎥⎦
=1 =RHS Hence proved.
(ii)LHS=cosec(90∘+θ)+cot(450∘+θ)cosec(90∘−θ)+tan(180∘−θ)+tan(180∘+θ)+sec(180∘−θ)tan(360∘+θ)−sec(−θ)=2
=secθ+cot(2π+π2+θ)secθ−tanθ+tanθ−secθtanθ−secθ
[∵cosec(90∘+θ)=secθ,cosec(90∘+θ)=secθ,tan(180∘−θ)=−tanθsec(−θ)=secθ]
=secθ+cot(π2+θ)secθ−tanθ+1[∵cot(2π+θ)=cotθ]
=secθ−tanθsecθ−tanθ+1[∵cot(π2+θ)=−tanθ]
=1+1
=2 =RHS Hence proved.
(iii)LHS=sin(180∘+θ)cos(90∘+θ)tan(270∘−θ)cot(360∘−θ)sin(360∘−θ)cos(360∘+θ)cosec(−θ)sin(270∘+θ)
=sinθ(−sinθ)cotθ(−cotθ)−sinθcosθ(−cosecθ)(−cosθ)
[∵tan(270∘−θ)=cotθ and sin(270∘+θ)=−cosθ]
=−sinθ×sinθ×cosθ×cosθ×sinθ−sinθ×cosθ×sinθ×inθ×cosθ[∵cotθ=cosθsinθ and cosecθ=1sinθ]
=1=RHS Hence proved.
(iv)LHS{1+cotθ−sec(π2+θ)}{1+cotθ+sec(π2+θ)}
={1+cotθ−(−cosecθ)}{1+cotθ−cosecθ}[∵sec(π2+θ)=−cosecθ]={(1+cotθ)+cosecθ}{(1+cotθ)−cosecθ}
=(1+cotθ)2−cosec2θ[∵1+cot2θ=cosec2θ]
=cosec2+2cotθ−cosecθ
=2cotθ=RHS Hence proved.
(v)LHS=tan(90∘−θ)sec(180∘−θ)sin(−θ)sin(180∘+θ)cot(360∘−θ)cosec(90∘−θ)
=cotθ×(secθ)×(−sinθ)−sinθ×(−cotθ)×secθ
=1=RHS Hence proved.