wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sincos(A+B+C)+sincos(A+B+C)+sincos(AB+C)sin(cos(A+BC))
(ii) sin(BC)cos(AD)+sin(CA)cos(BD)+sin(AB)cos(CD)=0

Open in App
Solution

(i) We have
LHS=cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sincos(A+B+C)+sincos(A+B+C)+sincos(AB+C)sin(cos(A+BC))2cos{A+B+CA+B+C2}cos{A+B+C+ABC2}+2cos{AB+C+A+BC2}=cosAB+CAB+C22sinA+B+CAA+B+C2cos{A+B+C+ABC2}+2sin{AB+CA+B+C2}cos{AB+C+A+BC2}=2cos(B+C)cosA+2cos(CB)2sin(B+C)cosA+2sin(CB)=2cos{B+C+CB2}cos{B+CC+B2}2sin{B+C+CB2}cos{B+CC+B2}=2cosC cosB2sinC cosB=cosCsinC=cotC=RHS cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sin(A+B+C)+sin(A+B+C)+sin(AB+C)sin(A+BC)=cotC

(ii) We have,
LHS=sin(BC)cos(AD)+sin(CA)cos(BD)+sin(AB)cos(CD)=0=12[2sin(BC)cos(AD)+2sin(CA)cos(BD)+2sin(AB)cos(CD)]=12[sin(BC+AD)+sin(BCA+D)+sin(CA+BD)+sin(CAB+D)+sin(AB+CD)+sin(ABC+D)]=12[sin(A+BCD)+sin(B+DCA)+sin(B+CAD)+sin(C+DAB)+sin(A+CBD)+sin(A+DBC)]=12[sin(A+BCD)sin(A+CBD)sin(A+DBC)sin(A+DBC)sin(A+BCD)+sin(A+CBD)+sin(A+DBC)]=12[0]=RHSsin(BC)cos(AD)+sin(CA)cos(BD)+sin(AB)cos(CD)=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon