Prove that:
(i) cos(A+B+C)+cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)sincos(A+B+C)+sincos(−A+B+C)+sincos(A−B+C)−sin(cos(A+B−C))
(ii) sin(B−C)cos(A−D)+sin(C−A)cos(B−D)+sin(A−B)cos(C−D)=0
(i) We have
LHS=cos(A+B+C)+cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)sincos(A+B+C)+sincos(−A+B+C)+sincos(A−B+C)−sin(cos(A+B−C))2cos{A+B+C−A+B+C2}cos{A+B+C+A−B−C2}+2cos{A−B+C+A+B−C2}=cosA−B+C−A−B+C22sinA+B+C−A−A+B+C2cos{A+B+C+A−B−C2}+2sin{A−B+C−A+B+C2}cos{A−B+C+A+B−C2}=2cos(B+C)cosA+2cos(C−B)2sin(B+C)cosA+2sin(C−B)=2cos{B+C+C−B2}cos{B+C−C+B2}2sin{B+C+C−B2}cos{B+C−C+B2}=2cosC cosB2sinC cosB=cosCsinC=cotC=RHS∴ cos(A+B+C)+cos(−A+B+C)+cos(A−B+C)+cos(A+B−C)sin(A+B+C)+sin(−A+B+C)+sin(A−B+C)−sin(A+B−C)=cotC
(ii) We have,
LHS=sin(B−C)cos(A−D)+sin(C−A)cos(B−D)+sin(A−B)cos(C−D)=0=12[2sin(B−C)cos(A−D)+2sin(C−A)cos(B−D)+2sin(A−B)cos(C−D)]=12[sin(B−C+A−D)+sin(B−C−A+D)+sin(C−A+B−D)+sin(C−A−B+D)+sin(A−B+C−D)+sin(A−B−C+D)]=12[sin(A+B−C−D)+sin(B+D−C−A)+sin(B+C−A−D)+sin(C+D−A−B)+sin(A+C−B−D)+sin(A+D−B−C)]=12[sin(A+B−C−D)−sin(A+C−B−D)−sin(A+D−B−C)−sin(A+D−B−C)−sin(A+B−C−D)+sin(A+C−B−D)+sin(A+D−B−C)]=12[0]=RHS∴sin(B−C)cos(A−D)+sin(C−A)cos(B−D)+sin(A−B)cos(C−D)=0