Prove that:
(i)cos11∘+sin11∘cos11∘−sin11∘=tan56∘
(ii)cos9∘+sin9∘cos9∘−sin9∘=tan54∘
(iii)cos8∘−sin8∘cos8∘+sin8∘=tan37∘
(i)cos11∘+sin11∘cos11∘−sin11∘
Dividing numerator and denominator by cos11∘, we get
=cos11∘cos11∘+sin11∘cos11∘cos11∘cos11∘−sin11∘cos11∘
=1+tan11∘1−tan11∘
=tan45∘+tan11∘1−tan45∘×tan11∘
=tan(45∘+11∘)
∴cos11∘+sin11∘cos11∘−sin11∘=tan56∘
Hence proved.
(ii)LHS:cos9∘+sin9∘cos9∘−sin9∘
cos9∘cos9∘+sin9∘cos9∘cos9∘cos9∘−sin9∘cos9∘
[Dividing numerator and denominator by cos9∘]
=1+tan9∘1−tan9∘
=tan45∘+tan9∘1−tan45∘×tan9∘
=tan(45∘+9∘)
=tan54∘
=RHS
∴LHS=RHS
Hence proved.
(iii)cos8∘−sin8∘cos8∘+sin8∘
cos8∘cos8∘−sin8∘cos8∘cos8∘cos8∘+sin8∘cos8∘
[Dividing numerator and denominator by cos8∘]
=1−tan8∘1+tan8∘
=tan45∘−tan8∘1+tan45∘×tan8∘
=tan(45∘−8∘)
=tan37∘
=RHS
∴LHS=RHS
Hence proved.