wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i)cos11+sin11cos11sin11=tan56
(ii)cos9+sin9cos9sin9=tan54
(iii)cos8sin8cos8+sin8=tan37

Open in App
Solution

(i)cos11+sin11cos11sin11
Dividing numerator and denominator by cos11, we get
=cos11cos11+sin11cos11cos11cos11sin11cos11
=1+tan111tan11
=tan45+tan111tan45×tan11
=tan(45+11)
cos11+sin11cos11sin11=tan56
Hence proved.
(ii)LHS:cos9+sin9cos9sin9
cos9cos9+sin9cos9cos9cos9sin9cos9
[Dividing numerator and denominator by cos9]
=1+tan91tan9
=tan45+tan91tan45×tan9
=tan(45+9)
=tan54
=RHS
LHS=RHS
Hence proved.
(iii)cos8sin8cos8+sin8
cos8cos8sin8cos8cos8cos8+sin8cos8
[Dividing numerator and denominator by cos8]
=1tan81+tan8
=tan45tan81+tan45×tan8
=tan(458)
=tan37
=RHS
LHS=RHS
Hence proved.


flag
Suggest Corrections
thumbs-up
27
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Special Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon