(i) We have,
LHS:sin(A+B)+sin(A−B)cos(A+B)+cos(A−B)
=2sinAcosB2cosAcosB
=sinAcosA
=tanA
=RHS
∴LHS=RHS
Hence proved.
(ii) We have,
LHS:sin(A−B)cosAcosB+sin(B−C)cosBcosC+sin(C−A)cosCcosA
=sinAcosB−cosAsinBcosAcosB+sinBcosC−cosBsinCcosBcosC+sinCcosA−cosCsinAcosCcosA
=sinAcosBcosAcosB−cosAsinBcosAcosB+sinBcosCcosBcosC−sinBsinCcosBcosC+sinCcosAcosCcosA−cosCsinAcosCcosA
=tanA-tanB+tanB-tanC+tanC-tanA
=0
=RHS
∴LHS=RHS
Hence proved.
(iii)We have,
LHS= sin(A−B)sinAsinB+sin(B−C)sinBsinC+sin(C−A)sinCsinA
sinAcosB−cosAsinBsinAsinB+sinBsinC−cosBsinCsinBsinB+sinCcosA−cosCsinAsinCsinA
=sinAcosBsinAsinB−cosAsinBsinAsinB+sinBcosCsinBsinC−cosBsinCsinBsinC+sinCcosAsinCsinA−cosCsinAsinCsinA
=cosBsinB−cosAsinA+cosCsinC−cosBsinB+cosAsinA−cosCsinC
=cotB-cotA+cotC-cotB+cotA-cotC
=0
=RHS
∴LHS=RHS
Hence proved.
(iv)We have,
RHS:sin2A+sin2(A−B)−2sinAcosBsin(A−B)
=sin2A=sin(A−B)[sin(A−B)−2sinAcosB]
=sin2A+sin(A−B)[sinAcosB−cosAsinB−2sinAcosB]
=sin2A+sin(A−B)[−sinAcosB−cosAsinB]
=sin2A−sin(A−B)(sinAcosB+cosAsinB)
=sin2A−sin(A−B)(sin(A+B))
=sin2A−sin(A−B)sin(A+B)
=sin2A−(sin2A−sin2B)
=sin2A−sin2A+sin2B
=sin2B
=LHS
∴LHS=RHS
Hence proved.
(v)RHS =cos2A+cos2B−2cosAcosBcos(A+B)
=cos2A+(1−sin2B)−2cosAcosBcos(A+B)
=[cos2A−sin2B]−2cosAcosBcos(A+B)+1
=[cos(A+B)cos(A−B)]−2cosAcosBcos(A+B)+1
=cos(A+B)[cos(A−B)−2cosAcosB]+1
=cos(A+B)[cosAcosB−sinAsinB−2cosAcosB]+1
=cos(A+B)[−cosAcosB+sinAsinB]+1
=-cos(A+B)[cos(A+B)]+1
=-cos2(A+B)+1
=-cos2A+B
= 1−cos2(A+B)
= sin2(A+B)
=RHS
∴LHS=RHS
Hence proved.
(vi) We have,
LHS= tan(A+B)cot(A−B)
=tan(A+B)1tan(A−B)
=tan(A+B)tan(A−B)
=[tanA+tanB1−tanAtanB][tanA−tanB1+tanAtanB]
(tanA+tanB)(tanA−tanB)(1−tanAtanB)(1+tanAtanB)
=tan2A−tan2B1−(tanAtanB)2
=tan2A−tan2B1−tan2Atan2B
=RHS
∴LHS=RHS
Hence proved.