Prove that
(i) sin2x1−cos2x=cotx
(ii) 1−cos2x1+cos2x=tan2 x
LHS=sin2x1−cos2x=cotx
(i) LHS=2sin x cos x2 sin2 x
[∵ sin 2x=2sinxcos x ,(1−cos 2x)=2sin2 x]
=cot x=RHS.
Hence, sin2x1−cos2x=cot x.
(ii) LHS=1−cos2x1+cos2x
= 2sin2x2cos2x
[∵(1−cos2x)=2sin2x,(1+cos2x)=2cos2x]
=tan2 x=RHS
Hence, 1−cos2x1+cos2x=tan2 x