Prove that:
(i) in+in+1+in+2+in+3=0
(ii) i107+i112+i117+i122=0
(iii) (1+i)4×(1+1i)4=16
We have
(i) in+in+1+in+2+in+3
=in(1+o+i2+i3)
=in(1+i−1−i)=(in×0)=0. [∵i2=−1 and i3=−i]
(ii) i107+i112+i117+i112 =i107(1+i5+i10+i15)=i107(1+i4×i+i8×i2+i12×i3) =i107(1+i+i2+i3) [∵i2=−1, i3=−i]
(iii) (1+i)4×(1+1i)4 =(1+i)4×(1+1i×ii)4=(1+i)4(1−i)4 [∵i2=−1] =[(1+i)(1−i)]4=(1−i2)4=[1−(−1)]4=24=16.