Prove that:
(i) If cos x=−35 and x lies in the IIIrd quadrant, find the values of cos x2, sin x2 and sin 2x.
(ii) If cos x=−35 and x lies in the IInd quadrant, find the values of sin 2x and sin x2
(i) Since cos x=−35=bh
⇒ b = 3, y = 5
⇒ p = 4
Now, x lies on third quad.
∴ sin 2x = 2 sin x. cos x
=2.(−45).(−35)=2425
∴ π<x<3π2 ⇒ π2<x2<3π4
Which means x2 lies in second quadrant.
So, cos x2=√1+cos x2
[∵ 1+cos 2θ=2 cos2 θ]=√1−352=−1√5
[-ve sign because of second quad. where cos D is -ve]
Also,
sin x2=sin x2 cos x2
[∵ sin 2A = 2 sin A cos A]
=⎛⎜⎝−452(−1√5)⎞⎟⎠=2√5
(ii) ∵ x lies IInd quadrant.
⇒ π2<x<π⇒π<2x<2π⇒ 2x lies in 1st quad.
Also, cos x=−35=bh
⇒ b = 3
h = 5
⇒ p = 4
So, sin x=ph=45
∴ sin 2x = 2 sin x cos x
=2.45.(−35)=−2425sinx2=sin x2 cos x2 or √1−cos x2=√1−(1−35)2=2√5