Prove that :
(i) (xaxb)1ab(xbxc)1bc(xcxa)1ca=1(ii) 11+xa−b+11+xb−a=1
(i) (xaxb)1ab(xbxc)1bc(xcxa)1ca=1L.H.S.=(xaxb)1ab(xbxc)1bc(xcxa)1ca(xa−b)1ab(xb−c)1bc(xc−a)1ca=xa−babxb−cbcxc−aca {(xa)b=xab}=xa−bab+b−cbc+c−aca=xac−bc+ab−ac+bc−ababc=x0=1=R.H.S. (∵ x0=1)(ii) 11+xa−b+11+xb−a=1L.H.S.=11+xa−b+11+xb−a=1xa−a+xa−b+1xb−b+xb−a=1xa.x−a+xa.x−b+1xb.x−b+xb.x−a=1xa(x−a+x−b)+1xb(x−b+x−a)=1(x−a+x−b)[1xa+1xb]=1x−a+x−b[x−a+x−b]=1=R.H.S.